Cloud computing

Is the delivery of computing and storage capacity as a service to a community of end-recipients. The name comes from the use of a cloud-shaped symbol as an abstraction for the complex infrastructure it contains in system diagrams. Cloud computing entrusts services with a user’s data, software and computation over a network. There are three types of cloud computing: Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). Using Software as a Service, users also rent application software and databases. The cloud providers manage the infrastructure and platforms on which the applications run. End users access cloud-based applications through a web browser or a light-weight desktop or mobile app while the business software and user’s data are stored on servers at a remote location. Proponents claim that cloud computing allows enterprises to get their applications up and running faster, with improved manageability and less maintenance, and enables IT to more rapidly adjust resources to meet fluctuating and unpredictable business demand. Cloud computing relies on sharing of resources to achieve coherence and economies of scale similar to a utility (like the electricity grid) over a network (typically the Internet). At the foundation of cloud computing is the broader concept of converged infrastructure and shared services.

Infrastructure as a service (IaaS)

In this most basic cloud service model, cloud providers offer computers, as physical or more often as virtual machines, and other resources. The virtual machines are run as guests by a hypervisor, such as Xen or KVM. Management of pools of hypervisors by the cloud operational support system leads to the ability to scale to support a large numbers of virtual machines. Other resources in IaaS clouds include images in a virtual machine image library, raw (block) and file-based storage, firewalls, load balancers, IP addresses, virtual local area networks (VLANs), and software bundles[39]. IaaS cloud providers supply these resources on demand from their large pools installed in data centers. For wide area connectivity, the Internet can be used or — in carrier clouds — dedicated virtual private networks can be configured. To deploy their applications, cloud users then install operating system images on the machines as well as their application software. In this model, it is the cloud user who is responsible for patching and maintaining the operating systems and application software. Cloud providers typically bill IaaS services on a utility computing basis, that is, cost will reflect the amount of resources allocated and consumed.

Platform as a service (PaaS)

In the PaaS model, cloud providers deliver a computing platform typically including operating system, programming language execution environment, database, and web server. Application developers can develop and run their software solutions on a cloud platform without the cost and complexity of buying and managing the underlying hardware and software layers. With some PaaS offers, the underlying computer and storage resources scale automatically to match application demand such that cloud user does not have to allocate resources manually.

Software as a service (SaaS)

In this model, cloud providers install and operate application software in the cloud and cloud users access the software from cloud clients. The cloud users do not manage the cloud infrastructure and platform on which the application is running. This eliminates the need to install and run the application on the cloud user’s own computers simplifying maintenance and support. What makes a cloud application different from other applications is its elasticity. This can be achieved by cloning tasks onto multiple virtual machines at run-time to meet the changing work demand.[40] Load balancers distribute the work over the set of virtual machines. This process is inconspicuous to the cloud user who sees only a single access point. To accommodate a large number of cloud users, cloud applications can be multitenant, that is, any machine serves more than one cloud user organization. It is common to refer to special types of cloud based application software with a similar naming convention: desktop as a service, business process as a service, Test Environment as a Service, communication as a service.

Cloud Storage Attributes

⦁ Adaptive data storage that expands in real time to accommodate the amount of data inside
⦁ Enterprise-grade network security features
⦁ Pre-defined storage policies to control distribution of data
⦁ API-based access so users can upload or retrieve data anywhere anytime from any device connected to the Internet
⦁ Pay-for-what-you-use pricing that includes storage capacity, network, and security services
Access to your data backed by a service-level agreement of 99.9% availability

Cloud Storage Benefits

⦁ Ability to specify location of the data, which impacts performance objectives and regulatory compliance
⦁ Avoid upfront capital expenditures on hardware and on-going operating expense on maintenance
⦁ Utilize additional storage capacity without additional planning or integration
⦁ Meet peak demand without over provisioning
⦁ Supplement your other storage systems for cost-effective data retention